

Less Restrictive Parenting Protects Against Anxiety for Children with High Resting RSA

Kathy Sem¹, Nila Shakiba¹, Hong N. T. Bui², Danielle R. Novick², Christina M. Danko², Lindsay Druskin³, Andrea Chronis-Tuscano², Kenneth H. Rubin², & Nicholas J. Wagner¹

¹Boston University, ²University of Maryland, ³West Virginia University

Introduction

- Behavioral Inhibition (BI): Inborn bias to respond to unfamiliar situations with fear and withdrawal (Kagan et al., 1984)
 - BI is a temperamental risk factor for anxiety (Chronis-Tuscano et al., 2009)
- BI children experience restrictive and overprotective parenting behaviors due to parents viewing BI children as vulnerable (Rubin et al., 2009), further increasing risk for anxiety
- Variability in anxiety outcomes for BI children may be due to children's psychophysiological functioning moderating risk pathways (Calkins et al., 2013)
- Resting <u>Respiratory Sinus Arrhythmia (RSA)</u>: Index for parasympathetic (PNS) functioning and provides insight into children's regulatory resources (Wagner & Waller, 2020)
 - High resting RSA relates to better regulatory control (Beauchaine, 2001), suggesting adequate resources to adapt to environmental challenges

Aim 1: Examine restrictive parenting and children's anxiety association

Aim 2: Examine whether children's resting RSA moderates this association

<u>Methods</u>

Sample

- Recruitment: children with elevated BI participating in larger intervention study
- Sample:
 - N = 151
 - Age = 3 5.5 (M = 3.5, SD = 0.38)

Measures

- <u>Restrictive Parenting</u>: Child Rearing Practices Report (Rickel & Biasatti, 1982) — Parent Report
- Anxiety: Preschool Play Behavior Scale (Copland & Rubin, 1998) and School Anxiety Scale (Lyneham et al., 2008) — Teacher Report
- <u>RSA</u>: Children watched a relaxing Sesame Street music video while photoplethysmography (PPG) was collected

Tables & Figures

Table 1. Zero-order bivariate correlations and descriptive statistics

1	2	3	4	5	6	/	8	9
-0.027								
0.053	-0.126							
-0.104	-0.007	-0.007						
0.030	0.033	-0.060	-0.009					
-0.070	-0.119	0.056	-0.014	-0.038				
-0.013	0.089	-0.038	-0.205*	-0.260*	-0.106			
0.252	0.140	0.134	0.128	-0.061	-0.231	0.033		
0.027	-0.007	-0.074	0.053	0.044	0.128	-0.214	0.098	
6.609	0.510	52.95	1.510	7.709	-2.219	2.950	7.570	6.352
135.54	0.50	5.68	0.50	1.160	2.366	0.622	0.927	0.797
	0.053 -0.104 0.030 -0.070 -0.013 0.252 0.027 6.609	0.053-0.126-0.104-0.0070.0300.033-0.070-0.119-0.0130.0890.2520.1400.027-0.007						

Note. Correlations calculated using maximum likelihood estimates to handle missing data. Child Sex (0 = Female, 1 = Male). Child race (0 = non-white, 1 = White). Parent Education ranged from 1 = less than high school to 9 = Doctoral Degree/Equivalent.

Table 2. Hierarchical regression table

Step 1				Step 2	_			
Variables	В	SEB	t	p	В	SEB	t	p
Cohort	0.052	0.040	1.284	0.199	0.069	0.040	1.714	0.087
Child Sex	0.319	0.260	1.228	0.220	0.381	0.248	1.534	0.125
Child Age	0.025	0.023	1.110	0.267	0.028	0.022	1.311	0.190
Child Race	0.178	0.264	0.676	0.499	0.275	0.271	1.017	0.309
Parent Education	-0.040	0.091	-0.440	0.660	0.0140	0.101	0.101	0.919
Time in School	-0.072	0.069	-1.046	0.296	-0.060	0.068	-0.882	0.378
Restrictive	0.121	0.164	0.739	0.460	-3.512	1.280	-2.744	0.006
Parenting								
Child RSA	0.061	0.176	0.347	0.729	-1.697	0.592	-2.866	0.004
Interaction					0.582	0.204	2.856	0.004

Children's RSA moderates Restrictive Parenting on Anxiety

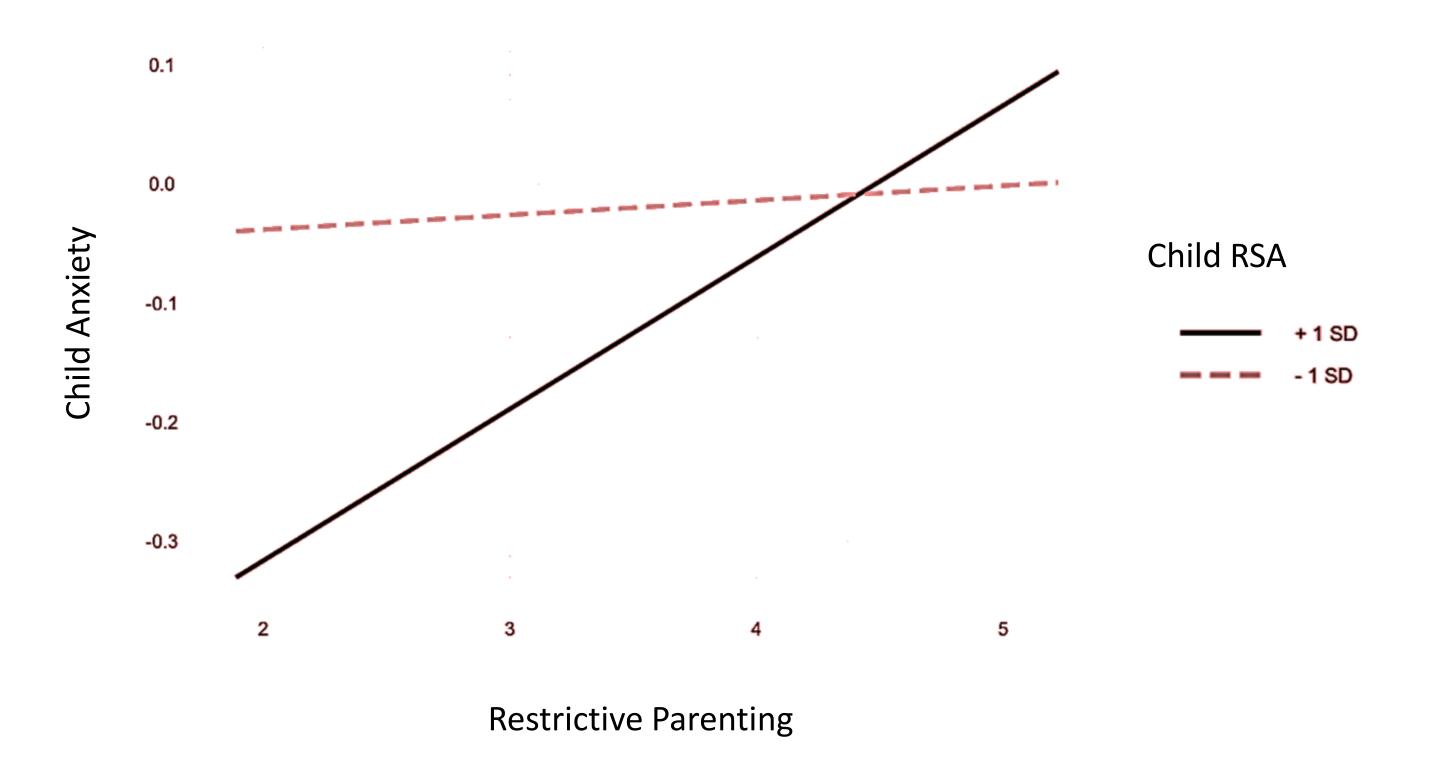


Figure 1. Interaction of restrictive parenting and child RSA on child anxiety. Simple slope analysis showed that for only children with high RSA (+1SD), less restrictive parenting related to less anxiety

Results

- Restrictive parenting significantly correlated with child race (r = -0.205, p = 0.013)
 - White children associated with less restrictive parenting compared to nonwhite children
- Restrictive parenting significantly correlated with parent education (r = -0.260, p = 0.020)
 - Parents with higher educational attainment associated with less restrictive parenting behavior
- **Aim 1**: Restrictive Parenting → Child Anxiety
 - Restrictive Parenting did not significantly predict child anxiety (n.s.)
- Aim 2: Restrictive Parenting x Child RSA →
 Child Anxiety
 - The interaction of restrictive parenting and child RSA significantly predicted child anxiety (B = 0.582, p = 0.004)
 - For children with high resting RSA (+1SD), low levels of restrictive parenting related to less anxiety

Discussion

Conclusion

 Results suggest that PNS functioning moderates the influence of restrictive parenting on children's anxiety in the context of elevated BI

Limitations

 Current study examined resting RSA, which doesn't account for an individual's ability to regulate dynamically across experiences

Future Direction

- Examine whether children with high RSA benefit from reducing restricting parenting interventions more than children with low RSA
- Examine whether indices of physiology regulation (e.g., SNS, PNS, HPA) moderates treatment efficacy and child outcomes